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LAB 10 – Bison and Flex 
 

John Dempsey 

COMP-232 Programming Languages 
California State University, Channel Islands 

October 29, 2025 
Hard Due Date: November 7, 2025 

In this lab, we will be using flex to build a lexer via regular expressions and bison to 

parse the sequence of tokens output by said lexer. 

The instructions for LAB 10 are found below and files are found on comp232.com in 

/home/LAB10.   

 

Before you start, you will want to install flex and bison: 

• Mac: brew install flex bison 

• WSL: in the Ubuntu console, sudo apt-get install -y flex bison 

sudo apt-get install -y flex bison will work on Linux distributions in general, if you're 

not using one of the two above. 

 

Part 1: Lexing with Flex 

We will cover a minimal introduction to the use of flex in this lab. The LEX & YACC 

Tutorial will provide some more detail, and you will likely want to refer to it throughout 

the lab to fill in the gaps, and particularly to explore the capabilities of flex's regular 

expressions. 

If you are not familiar with regular expressions, or it's been a while and you're rusty, you 

may want to watch this video first. 

Consider this grammar: 

<program> ::= <statement> | <statement> <program> 
<statement> ::= <assignStmt> | <ifStmt> | <whileStmt> | <repeatStmt> | <printStmt> 
 
<assignStmt> ::= <ident> = <expr> ; 
<ifStmt> ::= if ( <expr> ) <statement> 
<whileStmt> ::= while ( <expr> ) <statement> 
<repeatStmt> ::= repeat ( <expr> ) <statement> 
<printStmt> ::= print <expr> ; 
 

https://www.youtube.com/watch?v=sa-TUpSx1JA
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<expr> ::= <term> | <term> <addop> <expr> 
<term> ::= <factor> | <factor> <multop> <term> 
<factor> ::= <ident> | <number> | <addop> <factor> | ( <expr> ) 
 
<number> ::= <int> | <float> 
<int> ::= <digit> | <int> <digit> 
<float> ::= <digit>. | <digit> <float> | <float> <digit> 
 
<ident> ::= <letter> | <ident> <letter> | <ident> <digit> 
 
<addop> ::= + | - 
<multop> ::= * | / | % 
 
<digit> ::= 0-9 
<letter> ::= a-z | A-Z | _ | $ 
 

Enumerate all of the token types in this grammar in the TOKEN enum in flex.h. In flex.c, 

fill out the tokenTypeStrings array in the same order as the TOKEN enum. This way, the 

elements of the TOKEN enum can be used to index the tokenTypeStrings array and get the 

corresponding string for printing purposes. This works because enum elements are 

really just named integers, starting at 0 by default and progressing upward in the order 

they appear in the enum. 

 

Once you've enumerated all of the TOKEN types, you're ready to begin working on 

the flex.l. This file is essentially a configuration file, which flex will use to generate a 

scanner. 

 

flex.l is divided into 3 sections. These sections are separated by lines containing %%. 

The first section is for definitions, the second for rules, and the third for subroutines. 

Your task is to complete the first and second sections (the third section will be left 

empty). 

The Definitions Section 

The first section can, in theory, be left empty for what we are doing today, but it should 

not be. In this section, you can define shortcuts for regular expressions. 

Consider these lines in flex.l: 

 
letter          [a-z] 
digit           [0-9] 

 

The two lines above define letter to be a shorthand for the regular expression [a-

z] and digit one for [0-9]. 

 



3 
 

Next, consider these lines: 

float           {digit}+\.{digit}* 
ident           {letter}+ 

 

The two lines above define float to be one or more digits, followed by a period and 

then 0 or more digits, and define ident to be 1 or more letters. 

 

Note that when the digit and letter definitions were used in 

the float and ident definitions, they were encased in curly braces {}; this is how 

definitions are referenced. The letter andident definitions do not match the grammar, 

and will therefore need to be rewritten. Moreover, regular expressions cannot be 

recursively defined in flex (or in any regular expression implementation that I've seen), 

so you will have to solve the ident production's recurrence to determine what sorts of 

strings an ident can be made out of. 

The Rules Section 

The second section (after the first %%) is for tokenization rules. Each line consists of a 

regular expression (or a definition from the first section) followed by a block (written in 

C) specifying what action is to be taken when a string is encountered which matches 

said regular expression. The goal in each block is to return the correct token type (and 

do anything else that needs doing, but for this lab we will just be returning token types). 

flex.h has been included at the top of the definitions section, so the blocks of C code in 

the rules section can reference anything accessible to flex.h. This is necessary; the token 

types being returned are defined in flex.h. 

 

Consider these lines provided in the rules section: 

if          {return IF_TOKEN;} 
{float}     {return FLOAT_TOKEN;} 
{ident}     {return IDENT_TOKEN;} 

 

These lines mean, respectively: 

• When the string "if" is encountered, return an IF_TOKEN. 

• When a string matching the float definition is encountered, return a FLOAT_TOKEN. 

• When a string matching the ident definition is encountered, return 

an IDENT_TOKEN. 
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Some of the strings which need to be tokenized (such as parenthesis) have meta-

meaning in regular expressions, and therefore will need to either be escaped or put in 

quotes in order to function as literal characters in a regular expression. For instance: 

This does not work: 
 
(   {return LPAREN_TOKEN;} 
 
Either of these work: 
 
\(   {return LPAREN_TOKEN;} 
"("   {return LPAREN_TOKEN;} 
 

The order in which tokenization rules appear matters. For example, any keyword (print, 

repeat, etc) will also match the regular expression for an identifier. As such, all of the 

keyword tokenizations must happen before the identifier tokenization, so keywords 

match their patterns and return the correct token type before they are ever compared to 

the ident definition. 

 

Three more rules have been provided at the bottom of the rules section (and they 

should be the last three in the rules section when you are done): 

<<EOF>>     {return EOF_TOKEN;} 
[ \n\r\t]   ; //skip whitespace 
.           {printf("ERROR: invalid character: >>%s<<\n", yytext);} 
 

These rules are to tokenize the end of file, skip whitespace, and catch any invalid 

characters, respectively. 

The Subroutines Section 

We'll talk about this section briefly in a future lab, but for now we're just going to leave 

it blank. Feel free to read up on it in the provided PDF! 

Output 

When you have completed the TOKEN enum in flex.h, the tokenTypeStrings array 

in flex.c, and definitions and rules sections in flex.l, you are ready to test! 

There is a provided sample input, input.txt, with the following contents: 

 
while (0.4) abc_1_2 = agd + 1; 
if (condition) print ("hello") ; 
 

For this sample input, the output should be: 
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{<while> "while"} 
{<lparen> "("} 
{<float> "0.4"} 
{<rparen> ")"} 
{<ident> "abc_1_2"} 
{<assign> "="} 
{<ident> "agd"} 
{<addop> "+"} 
{<int> "1"} 
{<semicolon> ";"} 
{<if> "if"} 
{<lparen> "("} 
{<ident> "condition"} 
{<rparen> ")"} 
{<print> "print"} 
{<lparen> "("} 
ERROR: invalid character: >>"<< 
{<ident> "hello"} 
ERROR: invalid character: >>"<< 
{<rparen> ")"} 
{<semicolon> ";"} 
{<eof> ""} 
 
Process finished with exit code 0 
 

You do not need to edit the main to match this output; the only change you need to 

make to flex.c is to fill out the tokenTypeStrings array. 

 

Each token is printed with both its type and the string value that was tokenized. In some 

cases this is redundant, and that's fine; we will work on more complex tokenization rules 

which process the string value or simply ignore it in a later lab. 

When you run, a lexer called lexer.c is generated in the src/lexer directory; 

your flex.l file served as a configuration file specifying how this lexer should function. 

Submission Checklist 

Your submission should: 

• Complete the TOKEN enum in flex.h. 

 

• Complete the tokenTypeStrings array in flex.c such that the token types are 

named in the same order they are declared in the TOKEN enum. 

 

• Improve input.txt to rigorously test your scanner for the provided grammar. 
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Part 2 - Lexing and Parsing with Flex and 

Bison 

Bison is a tool which allows for the generation of a parser from a configuration file. It is a 

free equivalent to yacc, a proprietary tool for the same purpose; the bison configuration 

file's extension will be .y, for "yacc". 

 

As with flex in the last lab, we will cover a minimal introduction to bison here. You will 

want to refer to LEX & YACC Tutorial for a more detailed overview throughout the lab. 

In this lab, you will create a lexer using flex and a parser using bison in order to evaluate 

expressions in Cambridge-Polish Notation (CPN). The results of evaluation will be 

numeric, and we will house them in the NUMBER struct provided in calc.h; read through it. 

Cambridge-Polish Notation 

Cambridge-Polish Notation (CPN) is a notation which lists functions and their operands 

enclosed together in parenthesis, with the operands following the operator. For 

example, the arithmetic expression 1+2 in CPN would be (+ 1 2) or (add 1 2) (our 

implementation will use the latter representation). 

 

CPN expressions are nestable. That is, a CPN expression can be used as one of the 

operands in another CPN expression. For example, the expression (sub 3 (add 1 2)) is 

valid and would evaluate to 0 (note here that sub is subtraction). 

You will be making a lexer and parser for expressions in CPN from the following 

grammar: 

<program> ::= <expr> EOL | QUIT 
<expr> ::= <number> | <f_expr> 
<f_expr> ::= ( FUNC <expr> ) | ( FUNC <expr> <expr> )  
<number> ::= INT | FLOAT 

 

The grammar is incomplete; it does not include definitions for the 

tokens FUNC, INT, FLOAT, QUIT, and EOL. These will be defined as follows: 

• FUNC : One of the following strings (function names): 

o "neg" 

o "abs" 

o "exp" 

https://github.com/dempseyucla/232_BISON_FLEX/blob/master/bison/resources/LexAndYaccTutorial.pdf
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o "log" 

o "sqrt" 

o "add" 

o "sub" 

o "mult" 

o "div" 

o "rem" 

• INT: an optional + or - sign, followed by one or more digits. 

• FLOAT: an optional + or -, one or more digits, a period, and 0 or more trailing 

digits. 

• QUIT: the string "quit". 

• EOL: the newline character \n 

Lexing with Flex and Bison 

Defining Grammar Elements with Bison 

The task of tokenization is a bit more complex than it was in the previous part, because 

the lexer will interact with the parser. 

Open calc.y, the yacc file for this project, and calc.l, the lex file for this project. 

Like the .l file, the .y file is divided into three sections by lines containing %%; these three 

sections are for definitions, rules and subroutines respectively. Before the lexer can be 

filled out in calc.l, it is necessary to fill out the definitions section of calc.y; this section 

will enumerate the tokens and types (the composite syntax tree elements, i.e. those 

"above the token level"). It will also specify what data types will be used to house the 

data for said tokens and types. 

 

calc.y's definitions section has the following contents: 

 
%{ 
    #include "calc.h" 
    #define ylog(r, p) {fprintf(flex_bison_log_file, "BISON: %s ::= %s \n", #r, #p); 
fflush(flex_bison_log_file);} 
%} 
 
%union 
{ 
    double dval; 
    struct number *nval; 
} 
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%token <dval> INT FLOAT 
%token EOL 
 
%type <nval> number 

We will cover a brief description of what these lines mean; more insight can be 

found here (pdf here). 

Let's start with the first part, which isn't really parser-related: 

%{ 
    #include "calc.h" 
    #define ylog(r, p) {printf(flex_bison_log_file, "BISON: %s ::= %s \n", #r, #p);} 
%} 

The two lines above are read directly into the parser that bison generates based on the 

contents of the yacc file. We already know what #include "calc.h" does; the other line is 

a preprocessor definition that creates a macro called ylog, which we'll use to log which 

productions are used during parsing, for debugging purposes. The outputs from 

this ylog function (and it's lexer equivalent, llog) will be in the logs folder, in a file 

called flex_bison_log. 

 

Next, we get into the actual parsing configurations: 

%union 
{ 
    double dval; 
    struct number *nval; 
} 

The %union command in bison specifies the data types that semantic values (tokens and 

types) have. This particular %union denotes that the tokens and types in our grammar will 

have their data stored in data types double and NUMBER * (struct number and NUMBER are 

identical, check the typedef in calc.h). 

 

This union is stored in a variable called yylval for each individual token. If a FLOAT token 

has data is stored in double form, that data could be accessed through yylval.dval, 

because dval is the name we've given to the double member of the union. 

 

Then, we have the declarations for tokens: 

%token <dval> INT FLOAT 
%token EOL 

The following line, %token <dval> INT FLOAT creates two types of tokens, INT and FLOAT, 

and specifies that their values will be stored in yylval.dval (so, as type double). This is 

https://www.gnu.org/software/bison/manual/html_node/Table-of-Symbols.html
https://github.com/dempseyucla/232_BISON_FLEX/blob/master/bison/resources/Bison3.5_TableOfSymbols.pdf
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not a mistake; we'll be storing the numeric values of both INTs and FLOATs in double form, 

for the sake of simplicity in performing calculations later on. 

 

Next, %token EOL creates one more type of token. It does not specify an enum element in 

which to store data, because there is no additional data necessary for an EOL token; the 

fact that it is an EOL ("end of line") token is all that is needed for its use as a delimiter. 

Finally, there is a definition for an element of the grammar which is above the token 

level: 

%type <nval> number 

This line declares the number type, and specifies that the data for any given number will be 

stored yylval.nval, which we can see in the union is a NUMBER *. 

The following tokens are missing; you'll need to add them: 

• FUNC 
• LPAREN 
• RPAREN 
• QUIT 

Multiple tokens can be included on the same line; the missing tokens which don't 

require any additional data other than their type can simply be added in with the EOL, 

just like INT and FLOAT were listed on the same line because they both 

store double values. Add LPAREN and RPAREN to the data-less tokens, alongside EOL. 

The FUNC token, however, will require some additional data; we need to know which 

function it is. You might be tempted to add a char * to the %union, to store the function 

names. While this would work, it would be wasteful; we would need to allocate space for 

the function name, copy into it, free it up later... it would be a hassle. 

 

There is already an enum listing all of the functions in calc.h, called FUNC_TYPE. 

Conveniently, a function called resolveFunc, which takes a function name in string form 

as an input and outputs the corresponding FUNC_TYPE, is declared in calc.h and defined 

in calc.c. The lexer can simply call resolveFunc on yytext (the buffer used to temporarily 

store tokens' string values while they are being processed) to find the 

correct FUNC_TYPE value for each FUNC token. (You don't need to this yet, we will do it in 

the next section). 

 

From here, it seems pertinent to add FUNC_TYPE fval; to the %union, and declare function 

tokens with a line like %token <fval> FUNC. Unfortunately, our typedefs 

from calc.h cannot be accessed calc.y (which is why we use struct number *nval instead 

of NUMBER *nval). Recall that enum elements are just named integers! Add int fval; to 

the %union instead, and the token declaration %token <fval> FUNC will do the trick. This 
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way, our FUNC tokens will store an integer value, which we will ensure is one of 

the FUNC_TYPE elements. 

 

You may notice that we haven't declared the expr or f_expr syntax tree elements yet; 

these, like number, are above the token level and will be %types. We will come back to 

them when we're done lexing. 

Lexing with Flex 

Now that all types of tokens have been declared, we can move on to lexing. 

At the top of calc.l, you can see the following, which aren't really lexer-related: 

 
%option noyywrap 
 
%{ 
    #include "calc.h" 
    #define llog(token) {fprintf(flex_bison_log_file, "LEX: %s \"%s\"\n", #token, 
yytext);fflush(flex_bison_log_file);} 
%} 

The %option noyywrap specifies that there is only one input file, as opposed to a 

sequence of input files. That is an oversimplification, but you can comfortably ignore it 

and nothing will break, or research it further if you're curious. 

Then, the two lines in braces are nearly identical to those at the start of calc.y; they 

include calc.h, and define a macro that we will use for logging lexer actions, for 

debugging purposes. 

 

Next, we can move on to the meat of the definitions section; part of it has been done for 

you: 

digit       [0-9] 
int         [+-]?{digit}+ 

You will need to complete this definitions section, just like in the previous part of this 

lab. We won't discuss it further here, but you can refer to the previous part for review. 

Then, you'll need to complete the rules section, denoting what to do when each type of 

token is encountered. This section will be a little more complex than it was in the last 

part, as this time we're interacting with the configurations made in the .y file. Rules 

for INT and EOL tokens have been included, as have rules to skip whitespace and warn of 

invalid characters. 

 

Let's look first at the EOL rule: 
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[\n] { 
    llog(EOL); 
    return EOL; 
} 

This rule specifies that when a newline character is encounters, a call to the llog function 

should be made, specifying that the EOL tokenization process has started, and then 

an EOL token should be returned. Because EOL tokens don't require any additional data, 

nothing else needs to be done here. 

 

Next, consider the INT rule: 

 
{int} { 
    llog(INT); 
    yylval.dval = strtod(yytext, NULL); 
    return INT; 
} 

This rule specifies what should be done when a sequence of characters matching the 

previously defined {int} definition is encountered. It does the following 

• logs that the INT tokenization has started. 

• converts the matched string value yytext to double with with strtod 

• stores the double value in yylval.dval; look back at the %union in calc.y to confirm 

that dval is the identifier we've given to double values for tokens. 

• returns an INT token (to which we've just assigned a double value). 

You'll need to complete the definitions and rules sections of calc.l to complete the 

lexer. 

Parsing with Bison 

Now that the lexer configurations are set up, we can start on the parser configurations. 

The first order of business is to add the missing %types. Specifically, we are missing the 

grammar elements expr and f_expr. In order to decide what data type we should store 

these in, it is necessary to clarify that we will not be building the entire syntax tree this 

time; we will instead be evaluating it from the bottom up, as it is built. Thus, when we 

"parse" an expr or f_expr, we won't be connecting it to its children as designated in the 

grammar; we will instead be evaluating, i.e. using the children's values to determine the 

value of the parent. TLDR: expr and f_expr will be NUMBER*s, just like the number type.  
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Add expr and f_expr to the line declaring the number type to complete the definitions 

section of the .y file. 

 
%type <nval> number expr f_expr 

Much like the flex rules section specifies rules to translate sequences of characters into 

tokens, the bison rules section specifies rules to process sequences of grammar 

elements (tokens and types) using the productions in the grammar (encoded into the y 

file). 

These rules very closely match the grammar itself. Some rules have been provided; you 

can see the program rules below: 

 
program: 
    expr EOL { 
        ylog(program, expr EOL); 
        printNumber(stdout, $1); 
    } 
    | QUIT { 
        ylog(program, QUIT); 
        exit(0); 
    }; 

The rules above are the embodiment of this set of productions: 

<program> ::= <expr> EOL | QUIT 
 

Here, the program is the grammar element being produced, so it must be assigned. 

The program being produced is refered to with the shorthand $$. Furthermore it is being 

produced as a product of a sequence of grammar elements in the form expr EOL, whose 

values are referenced with $1 and $2 respectively (and if there were a third element 

comprising the program, its value would be referenced with $3, and so on...). 

 

We know that the data for an expr is stored in a NUMBER * becasue that is how 

the expr type was declared in the definitions section. Note that there is not a type 

definition for a program. The program type serves as an entry point. We're building a CPN 

calculator, so in this case we just want to print the result of the expr comprising the 

program. 

 

The block of C code contained within this rule specifies what should action should be 

taken when a program is produced from an expr followed by an EOL token. In this 

application, we make a call to printNumber (declared in calc.h and defined in calc.c) and 

pass in the NUMBER * value of the expr, so whenever we enter a valid expression the 

evaluated result of that expression will be printed. Recall: $1 is the expr from the expr 

EOL comprising the program, so we pass it into printNumber as $1. 
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We also make a call to ylog which, as discussed earlier, simply prints to 

the flex_bison_log file in the logs directory, so we can check which rules were used and 

in what order for debugging purposes. 

 

The rules for expr creation are also provided, and they serve as a better model for the 

the ones you'll need to add to complete the grammar: 

 
expr: 
    number { 
        ylog(expr, number); 
        $$ = $1; 
    } 
    | f_expr { 
        ylog(expr, f_expr); 
        $$ = $1; 
    }; 

These rules above match productions in the grammar: 

<expr> ::= <number> | <f_expr> 
 

As seen above, when a grammar element can be produced from several different 

sequences of elements, these options are separated with | (semantically, "or"). 

An expr differs from a program in a key way: an expr has a value. In the expr ::= 

number production, the line $$ = $1; assigns the NUMBER * value associated with 

the number element to the expr element being produced; in other words, if an expr is 

comprised of just a single number, then the expr's value is that of the number. 

Recall, $$ refers to the value of the element being produced (in this case the expr), 

and $n refers to the n'th element comprising the production (that is, the n'th element 

being reduced). 

 

You must complete this rules section, by filling out rules for the remaining productions: 

<f_expr> ::= ( FUNC <expr> ) | ( FUNC <expr> <expr> )  
<number> ::= INT | FLOAT 
 

An f_expr consists of parenthesis, a FUNC token and 1-2 exprs whose values serve as the 

operands for the specified function. A function called calc is declared in calc.h and 

defined in calc.c: 

 
NUMBER *calc(FUNC_TYPE func, NUMBER *op1, NUMBER *op2); 

This calc function takes as arguments the enum element corresponding to the function 

being performed and the value(s) of its operand(s) (in NUMBER * form). Its task is to 

calculate and return the result. We will cover how it should do so later on. 

https://github.com/dempseyucla/232_BISON_FLEX/blob/master/bison/bison.md#eval-section
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For now, assume that the calc function works (because you'll make it work later). Use it 

in the f_expr productions to get the value of the f_expr being produced by passing in 

the function specifier (i.e. the value of the FUNC token) and the value(s) of the operand(s) 

(i.e. the value(s) of the expr(s)). 

 

For single-operand function calls (those using the production f_expr ::= ( FUNC expr 

)), NULL should be passed into the calc call in place of a second operand. 

In the rules to produce number elements from INT and FLOAT tokens, 

the createNumber function should be called. It is declared in calc.h and defined 

in calc.c and has already been completed, but you will need to read its contents in 

order to determine how to use it! 

Evaluation 

Once parsing is complete, evaluation of expressions comes down to completion of the 

functions called from the calc function in calc.c. These functions are all declared, but 

must be filled out (these are the //TODOs in calc.c). 

 

The definitions of evalNeg and evalAdd have been provided as an example. If you're not 

sure what one of the functions is supposed to do, refer to the comments in 

the resolveFunc function near the top of calc.c. 

 

Binary functions with two integer arguments should output an integer. Binary functions 

in which one or more input is a float should output a float. Some unary functions should 

always output a float, and others should output a number whose type is the same as 

that of their input; you should be able to figure out which should behave which way. 

Sample Run 

The following is a sample run with no arguments provided in the run configurations, and 

with the inputs from the provided input.txt typed in one at a time. If you choose 

instead to include a path to input.txt as the first argument, you will see just the outputs; 

the inputs (on lines starting with > ) won't be typed in the console, as they'll be read 

from the file instead. 

 
> 1 
INT : 1 
 
> 1.0 
FLOAT : 1.000000 
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> -1 
INT : -1 
 
> -1.5 
FLOAT : -1.500000 
 
> +1 
INT : 1 
 
> +1.50 
FLOAT : 1.500000 
 
> 10 
INT : 10 
 
> 10.15 
FLOAT : 10.150000 
 
> -10.50 
FLOAT : -10.500000 
 
> (neg 1) 
INT : -1 
 
> (neg 1.0) 
FLOAT : -1.000000 
 
> (abs 1) 
INT : 1 
 
> (abs -1) 
INT : 1 
 
> (abs 1.5) 
FLOAT : 1.500000 
 
> (abs -1.0) 
FLOAT : 1.000000 
 
> (exp 1) 
FLOAT : 2.718282 
 
> (exp 1.0) 
FLOAT : 2.718282 
 
> (exp 0) 
FLOAT : 1.000000 
 
> (exp 0.) 
FLOAT : 1.000000 
 
> (log 1) 
FLOAT : 0.000000 
 
> (log 1.0) 
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FLOAT : 0.000000 
 
> (log 10) 
FLOAT : 2.302585 
 
> (log 0) 
FLOAT : -inf 
 
> (log -1) 
FLOAT : nan 
 
> (sqrt 1) 
FLOAT : 1.000000 
 
> (sqrt 1.0) 
FLOAT : 1.000000 
 
> (sqrt 0) 
FLOAT : 0.000000 
 
> (sqrt 0.0) 
FLOAT : 0.000000 
 
> (sqrt 4) 
FLOAT : 2.000000 
 
> (sqrt 4.0) 
FLOAT : 2.000000 
 
> (sqrt -1) 
FLOAT : nan 
 
> (sqrt -1.0) 
FLOAT : nan 
 
> (add 1 2) 
INT : 3 
 
> (add 1.0 2) 
FLOAT : 3.000000 
 
> (add 1 2.0) 
FLOAT : 3.000000 
 
> (add 1.0 2.0) 
FLOAT : 3.000000 
 
> (sub 2 1) 
INT : 1 
 
> (sub 2.0 1) 
FLOAT : 1.000000 
 
> (sub 2 1.0) 
FLOAT : 1.000000 
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> (sub 2.0 1.0) 
FLOAT : 1.000000 
 
> (mult 2 3) 
INT : 6 
 
> (mult 2 3.0) 
FLOAT : 6.000000 
 
> (mult 2.0 3) 
FLOAT : 6.000000 
 
> (mult 2.0 3.0) 
FLOAT : 6.000000 
 
> (div 1 2) 
INT : 0 
 
> (div 1 2.0) 
FLOAT : 0.500000 
 
> (div 1.0 2) 
FLOAT : 0.500000 
 
> (div 1.0 2.0) 
FLOAT : 0.500000 
 
> (div 1 0) 
INT : inf 
 
> (div 1.0 0.0) 
FLOAT : inf 
 
> (div 0 0) 
INT : nan 
 
> (rem 8 3) 
INT : 2 
 
> (rem -8 3) 
INT : -2 
 
> (rem 8.0 3) 
FLOAT : 2.000000 
 
> (rem 8 3.0) 
FLOAT : 2.000000 
 
> (rem 8.0 3.0) 
FLOAT : 2.000000 
 
> (rem 1 0) 
INT : nan 
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> (rem 1 0.0) 
FLOAT : nan 
 
> (add 1 (add 2 3)) 
INT : 6 
 
> (add 1 (add 2.0 3)) 
FLOAT : 6.000000 
 
> (log (exp 1)) 
FLOAT : 1.000000 
 
> (exp (log 1)) 
FLOAT : 1.000000 
 
> (add 1 (add 2 (add 3 (add 4 5)))) 
INT : 15 
 
> quit 
Process finished with exit code 0 

Submission Checklist 

You need to: 

• Complete the definitions section of calc.y to declare all %tokens and %types to 

match the grammar and complete the %union as necessary to store their data. 

 

• Complete the definitions and rules sections of calc.l to configure a lexer which 

populates any necessary data in tokens and returns the correct tokens. 

 

• Complete the rules section of calc.y to evaluate the parse tree from the bottom 

up. 

 

• Complete the TODOs in calc.c to do the actual function evaluations. 

You'll know when you're done, because your sample runs will match mine. You do not 

need to stress about immaterial differences (such as whether your nans and zeros are 

positive or negative). 
 


